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OPTIMAL COMPUTING FORMS FOR THE 
TWO-BODY C A N D  S SERIES 

INTRODUCTION 

The classical  solutions of the two-body problem separate naturally into the 
three cases of elliptic, parabolic, and hyperbolic motion, the mathematics being 
considerably different for  each case. A unified formulation is possible, valid 
for  all three cases ,  if certain transcendental functions, which we  call  the C and S 
functions, are introduced. 

The unified formulation is fully developed by Battin 111 and will not concern 
u s  here. The purpose of this paper is the presentation of approximations for the 
C and S functions and their derivative functions which reduce significantly the 
computation t imes required for  their evaluation when compared to that required 
by Taylor se r ies  expansions. 

THE C AND S FUNCTIONS 

The C and S functions are defined by 

S(x)  = 

- - 

C(x) = 
(3) 

[l - cosh ( - x ) ' l 2 ]  /x ,  x < o  (4) 

Since these functions a r e  indeterminate for  x = 0 and present accuracy 
problems when evaluated in the neighborhood of x = 0 ,  it is natural to 
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replace the above fo rms  by the following se r i e s ,  convergent fo r  all values 
of x :  

i = O  

For  large values of x ,  the convergence of these se r i e s  will be slow. It is 
then convenient to use the following reduction formulas, easily derived f rom the 
definitions (1) through (4): 

A(x) 1 - xS(x )  , (7) 

2C(4x) [A(x)] , ( 8 )  

4S(4x)  = S ( x )  + A ( x ) C ( x )  . (9) 

THE C' AND S' FUNCTIONS 

The derivatives S' ( x )  and C' ( x )  are needed for certain problems of orbit  
determination, guidance, and optimization. F rom (1) through (4) we obtain 

S ' ( x )  = [C(X) - 3S(X)]/2x 9 

C ' ( X )  = [A(x) - X ( X ) ] / ~ X  . 

These forms  suffer accuracy problems in the neighborhood of x 
again forcing us  to series representations. Differentiating (5) and (6),  

0 ,  
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i = l  

convergent f o r  all values of x . 
For large values of x ,  the following reduction formulas (obtained by dif- 

ferentiating (7), (8), and (9)) are useful. 

B(x)  = S ( x )  + x S ‘ ( x )  , (12) 

C’(4x)  = -A(x) B(x)  , (13) 

4 S ’ ( 4 x )  = S ‘ ( x )  f A ( x ) C ’ ( x )  - B ( x ) C ( x )  . (14) 

THE FIKE-KNUTH ALGORITHM 

Our f i r s t  step in obtaining economical computing forms for  (5) ,  (6) ,  ( l o ) ,  and 
(1 1) was the construction of sixth degree polynomial approximations on various 
intervals in the sense of Chebyshev. In other words, these polynomials minimize 
the magnitude of the maximum e r r o r  on the interval. The program to accomplish 
this was written by the third author, based on ideas of Stoer [2]. The coefficients 
of these polynomials are given in Numerical Results. 

Assume the approximating polynomial has the form 

p ( x )  = a. t a l x  t a 2 x 2  + a 3 x 3  + a4x4 -i a 5 x 5  -i a 6 x  6 , 

The evaluation of (15) by the usual method of nested multiplication 
requires 6 multiplications and G additions. However, using recently 



developed polynomial evaluation methods [3,4], (15) can be evaluated with 4 
multiplications and 7 additions. The form and parameters  for the algorithm, 
as it applies to our functions, a r e  given in Numerical Results. 

In the following description of the algorithm, a6 is assumed to be positive. 
If a s  is negative, a minor change is necessary. 

6 
Fike's modification of Knuth's method begins with a conversion: let p = 6, 

and let ck = ak/pk for  k = 0,1, . . , 5. Then compute 

- 
P -  

1 
T ( c ,  - 1) c 2  - pC' D" = 

B' = c 4  - p ( p +  1 )  E' = m' - B' t 1 

Find a rea l  root q of the cubic equation* 

and compute 

1 
A = T B ' - q  

C = p - 2 A  

B 

D = C ' -  q ( l  t D') - q 2  - D" - A 2 ( 1 + C )  - Bc 

E = q 2  t qD' t D" - ( A 2  +B)C 

F 

q - 2AC - A' 

co - (q2 t qD' + D " )  [C' - q (1 + D') - q2 - D"] , 

*See Appendix I.  

~ 
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Then our polynomial can be evaluated as follows 

In case  a 6  < 0, let T(x)  
last ,  for T( x ) .  The last step should be 

-P(x) and perform all the steps above, except the 

If the machine being used has  a "load negative" feature which is equivalent 
in execution time to "load positive", and if subtraction is likewise equivalent to 
addition, then this modification is equivalent to the original. 

A s  Fike points out, his method is a slight variation of that of Knuth [4], and 
since Knuth's method was inspired by Motzkin [SI ,  the three types bear a strong 
family resemblance. Each begins with a polynomial in form(l5)with a 6  = 1 ,  
and solves for  the parameters  in  the final evaluation scheme by expanding the 
scheme into a sixth degree polynomial and equating i t s  coefficients with those 
of form (15). To admit treatment of the general polynomial of degree six, how- 
ever ,  some transformation must be made so that as = l .  The most straight- 
forward way is 

Q(x)  = P(x) /a6  

and then applying any of the three methods to Q(x)  , adding an extra  step at the 
las t  in multiplying the result  by a s .  Fike specifies a different so r t  of trans- 
formation; his may be thought of as converting form (15) into 
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Again, any of the three methods apply to R( x )  and values of P( x)  are obtained 
by using px in the scheme for  R( x) , since R ( w )  = P( x) . 

This transformation, though a bit more complicated, is admirably suited to 
our particular problem. The type of polynomial with which we are dealing has  
the not uncommon characterist ic that 

and, in addition, I a, 1 is very small. For  example, suppose the coefficients of 
form (15) a r e  

a, = f . 2 8  x lo-,  

a3  - - - . 2 5  x lo-, 

a 2  f . 1 4  x 

a l  - - - . 4 2  x lo- '  

a, = f . S O  

If we use the division transformation, the coefficients bi of Q(x) a r e  

- bs - - .18  x IO3 

b, = + . 2 4  x lo5 

- b, - - . 2 2  x IO7 
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b, - - - .36 x 10" 

bo = + .44  x 10" 

Here the e r r o r s  in the numbers a i  have become greatly magnified; worse yet, 
the arithmetic of parameter production using the large numbers bi  is likely to 
suffer the effects of large e r r o r  propagation. In contrast, Fike's transformation 
gives us 

C 6  = 1 

c5  = - . 27 x 10' 

c4 = + .54 x 10' 

cg = - . 7 3  x 10' 

c 2  = + . 6 2  x 10' 

- 
c 1  - - . 2 8  x 10' 

c o  = .so 

These numbers of manageable size lend themselves very well to whichever 
scheme we choose. For  comparison, the two transformations above were 
evaluated by the Knuth algorithm for 40 points over the interval [- 1, + 11, 
and the differences between these values and the true values of the polynomial 
were obtained. Fo r  the division transformation, the absolute value of the 
maximum e r r o r  was . 9 2  x 10- 1 2 ;  for  the Fike transformation, this was  
. 16 x , a reduction by a factor  of more than 500. Several other test  
ca ses  were run, with resul ts  which apparently verify the conclusion that the 
Fike transformation used on t h i s  type of polynomial has a very definite advan- 
tage. There a re ,  of course,  other transformations which produce polynomials 
in which a6 = 1 . In general, one should use the transformation which keeps 
the coefficients of the transformed polynomial as small  as possible. 
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NUMERICAL RESULTS 

The four 
[-I, +13, [- 
e ters  for the 

approximation polynomials w e r e  generated for  each of the intervals 
2,  + 23 , [- 4, '41, [- 16, + 161, converted to form (15) and param- 
Fike evaluation scheme were obtained. In each case,  the values 

given by the final scheme were tested against "true" values of the original 
function for  all multiples of .002 in the interval concerned. The "true'' values 
came from expanding the power series of the function (1) for  enough t e rms  to 
guarantee that the relative e r r o r  from truncation would be less than lo-". 
The following tables exhibit, fo r  each of the sixteen functions considered, the 
coefficients a i  for  form (15), the parameters  A ,  B ,  C ,  D ,  E ,  and F for the Fike 
scheme, and the maximum absolute e r r o r s  fo r  both methods. F o r  comparison, 
a degree 4 approximation polynomial w a s  evaluated by both methods for  the 
functions C( X) and S( x) on the interval [- 1, + 13 , and the resul ts  are presented 
here also. 

8 



C( X )  = a. + a l  x + a2x2 + a3x3 + a4x4 + a5x5 + a6x6 on h, 

h = l  h = 2  

a 
a 
a2 = +o. 1388888888888999 X 
a 3  = -0.2480158725995993 X 
a4 = +0.2755731917059028 X 
a5 = - 0.2087759200397967 X 
a6 = +O. 114713410831 1665 X 10‘” 

= +O. 4999999999999998 X 1 Oo 
= - 0.4 166666666667 176 X 10’ ’ 

Ma= 0.76327833 X 10‘ l 5  

h = 4  

- + 0.499999999999840 1 X 10’ a. - 
a = - 0.4166666668808485 X 10- ’ 
a 2  = +O. 1388888889138842 X 
a = - 0.2480 157659289839 X 10- 
a4 = +0.2755731272513377 X lom6 
a5 = -0.2089014196095935 X 
a6 = +O. 1147636934013430 X 10’” 

Ma= 0.12239224 X lo-’’ 

- + 0.4999999999999993 x 100 a. - 
al = - 0.41666666667001 18 X 10” 
a2 = + 0.1388888888892785 X 1 0-2 
a3 = -0.2480158663241807 X 

= +0.2755731881710992 X a4 a5 = -0.2088010277268315 X 

a6 = +O. 1147215380312168 X 10”O 

Ma= 0.95645714 X 

h =  16 

- + 0.4999999894793 170 X 10’ a. - 
a l  = -0.4166675473500692 X l o - ’  
a2 = +0.1388889916034137 X 
a3 = - 0.24798836331 19184 X 
a4 = +0.2755565077419917 X 
a5 = -0.2109148028487573 X 
a6 = +O. 1156091702389399 X lo-’’ 
Ma= 0.20159773 X 
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q ’ = %  x 

92 = (41 + N 2  
93 = (92 + B) (41 + C) 

C ( X ) = ( q 2 + 9 3 + D ) ( + q 3 + E )  + F  on k h ,  

h =  1 h = 2  

A = + 0.45 1340858262789 1 X 10’ A = + 0.4512008438957284 X 10’ 
B = + 0.3744865190483202 X 10’ B = + 0.374936586512442 X 10’ 
C = -0.2769272800754423 X 10’ C = -0.2769076432349482 X IO’ 
D = + 0.9433565393074166 X 10’ D = + 0.942968 1327692907 X 10 ’ 
E = + 0.1055413968372178 X lo2 E = + O .  1055053194443676 X lo2 
F = + 0.6288 190624578802 X 1 0-2 F = +0.6284207351324604 X 

M = 0.5828670879282069 X M = 0.9935108291614367 X 

h = 4  

A = + 0.450701 9590625572 X 10’ 
B = + 0.3740448 13 1455307 X 10 
C = -0.2768317205414987 X 10’ 
D = + 0.9414899439055362 X 10 
E = + O .  105370131 1149719 X 102 
F = + 0.6272339359526764 X 1 0’2 

M = 0.1224323420423443 X lo-’’ 

10 

h =  16 

A = + 0.4405766736959988 X 10: 
B = + 0.3669989101432331 X 10 
c = - 0.2752824996097087 X 10; 
D = + 0.91 17484138879304 x 10 
E = +o. 1026464040151929 X IO2 
F = +0.6161613003116790 X 

M = 0.2015977389469012 x 



S ( X ) = a o  + a l x  + a 2 x 2  + a 3 x 3  +a4x4 +agx5 + a g x 6  on [-h, h] 

h = l  h = 2  

a. = + 0. 1666666666666665 X 10' 
a = - 0.8333333333333568 X 1 O-* 
a2 = +O.  1984126984129264 X 10-35 
a 3  = -  0.275573 191 9939401 X 10- 
a = + 0.25052 10785999854 X 10- i  
a5 = - 0. 1605953765319026 X 10- 

a0 = + 0. 1666666666666663 X 1 Oo 
a l  = - 0.8333333333352921 X 

a 2  = +O.  1984126984129057 X 
a 3  = - 0.2755731883077317 X 
a 4  = +O. 2505210816170333 X 
a5 = - 0.160610l133600677 X 10 - 9  

a6  = + 0.7650283228592385 X 10- l 2  a 6 = -b 0.7647926042737674 x 10' l 2  

Ma= 0.56621374 X Ma = 0.5551 1151 X 

h = 4  

a = + 0.166666666666658 1 X 1 Oo 
a = - 0.8333333334593 103 X 10- 
a 2  = +O.  1984126984258407 X 
a3  = - 0.2755731292513204 X 
a4 = +0.2505210496761327 X 
a 5  = - 0.1606691704048320 X 
a 6  = +0.7650122280184766 X 

Ma = 0.72000739 X 10- l 2  

h =  16 

a. = + 0.1666666661 133027 X 10' 
a 
a 2  = +  0.1984127524406629 X 
a3 = - 0.2755570214946503 X 

a4 = +  0.2505123071826789 X 
a 5  = - 0.1618528418504030 X 
a 6  =+O.7694603615375217 X 

Ma = 0.11845921 X 

= - 0.8333338509758059 X 1 0-2 
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h = l  

A = +O.  1030541 110544949 X l oo  
B = +O. 1357446199107850 X 10’ 

D = +O. 1803960616654583 X 10’ 
E = +0.2062171852872241 X 10’ 
F = + 0.2 13001 0466488949 X 10- ’ 
M = 0.2359223927328455 X 

C = - 0.1709888012144409 X 10’ 

h = 4  

A = + 0.1026453527945748 X 10’ 
B =+0.1356011711587295 X 10’ 

D = + 0.18005572770790 13 X 10’ 
E = + 0.2059246874696585 X 10’ 
F =+0.2125209137884825 X 10” 

M = 0.7223804887601657 X 

C = - 0.1709549340846876 X 10’ 

h = 2  

A = + 0.1028274494783523 X 10’ 
B = + 0.135687950541 7743 X 1 0 ’ 
C = - 0.170978463 1095070 X 10’ 
D = + 0.1802832347589989 X 10’ 
E = + 0.2060949727430426 X 10’ 
F = + 0.2 128753997322974 X 10’ ’ 
M = 0.80768725041 48012 X 10- l4 

h =  16 

A = + 0.989874283297480 X 10- ’ 
C = - 0.1704756 186376375 X 10’ 
B = + 0.1338586121335949 X 10’ 

D = + 0. 1754906650979839 X 10’ 
E = + 0.2025050653 157090 X 10’ 
F = + 0.2056593593968585 X 10- ’ 
M = 0.1184592103575797 X 
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h = l  h = 2  

a = - 0.4 166666666666430 X 1 0’ 
a = + 0.27777777784673 1 8 X 1 0-2 
a2  = - 0.1488095238678453 X 1 0‘3 
a3 =+0.6613751098214413 X l o m 5  
a4 =-0.2505208412532178 X loe6 
a = + 0.826996520528 1 566 X 10 - 
a 6  = - 0.2412214891589441 X 

Ma= 0.21684043 X 10’ l6 

h = 4  

a. = - 0.4166666651 125364 X 10” 
a = + 0.2777780643726382 X 1 0-2 
a2 = - 0.1488097663598733 X 
a 3  = +0.6612326049924104 X l om5  
a4 = - 0.2504581368842600 X 
a5 = + 0.8437138609417991 X 

Ma= 0.31997321 X 

a 6 = - 0.2463 133603265637 10- 

a. = - 0.4166666666606742 X 10” 
= + 0.2777777822034584 X 1 0‘2 
= - 0.1488095275535492 X 1 0-3 a2  
= +0.6613668137463213 X 
= - 0.2505171918626241 X 

a 3  

a 4  = + 0.8303 136595603477 X 1 0- 
a 5  = -0.2422316681583509 X a 6  

Ma= 0.25058081 X 

h =  16 

a. = - 0.4166666641763858 X lo - ’  
a = + 0.2777780078584500 X 1 O-* 
a2 = -0.7440478621862503 X 
a3 = +O. 1102220894089232 X 
a 4  = - 0.1043798352532477 X 
a5 = + 0.693855707 1056230 X 1 0’” 
a6 = - 0.3366982823031963 X 

Ma = 0.52654049 x 1 0- 
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h = l  

A = +0.6421500675794880 X 10‘’ 
B = +0.9631412054424315 X 10’ 
C=-O.l485378935681960X 10’ 
D = + 0.1206516480446427 X 10 ’ 
E = + 0.1262370275488431 X 10 ’ 
F = +0.2235785774036898 X 10 - 2  

* 

M = 0.1786765180256109 X 

h = 4  

A = +0.6405925631551870 X l o - ’  
B = +0.9624584033933687 X 10’ 
C = -0.1485269967153406 X 10’ 
D = +O. 1205018912730453 X 10’ 
E = +O. 1261394717119364 X 10’ 
F = +0.2210887038704210 X 

M = 0.3200469403386028 X 

h = 2  

A =+0.6415596248585610 X 10‘’ 
B = + 0.9629599640982438 X 10 ’ 
C = - 0.1485350658374242 X 10 ’ 
D = +O. 1206153148806730 X 10’ 
E = +O. 1262088821410514 X 10 
F = + 0.2230745797490601 X 10 -* 
M = 0.2680147770384164 X d4 

h =  16 

A =+0.6208183431484613 X l o - ’  
B =+0.9523193847619871 X 10’ 
C = -0.1483582934430130 X 10 ’ 
D =+0.1182131124018069X 10’ 
E = + 0.1247277466997771 X 10 ’ 
F = + 0.1829570481293727 X 10 - 2  

M = 0.5265405070287163 X 
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S ’ ( X ) = a o  + a , x  +a2x2 +a3x3 +a4x4 + a 5 x 5  +agx6 on [- h, h] 

h = l  h = 2  

a. = - 0.83333333333332 10 X 10 - 2  
a l  = +0.3968253968616768 X 

a 2  = - 0.1653439153716376 X 
a 3  = +0.6012503110063301 X 
a4 = -0.1927084107177350 X 

= + O s 5 1  1761621292874 X 35 
- -0.1418571972378231 X lo-’’ a6 - 

Ma= 0.26020852 X 10’ l7 

h = 4  

a0 = - 0.8333333325953303 X 10 - 2  
a l  = +0.3968255472561213 X 
a 2  = -0.1653440305444520 X 10 -4 
a 3  = +0.6011754909568150 X 10 -6 
a 4  = -0.1926786201990815 X 10 - 7  
a5 = +0.5599576811597955 X 
a6 = -0.1442776137237285 X lo-’’ 
M a =  0.16841563 X 

a. = -0.8333333333304809 X lo-* 
a l  = +0.3968253991531185 X 
a2  = -0.1653439171256403 X 
a3 =+0.6012459474285134 X l oe6  
a4 = - 0.1927066737597982 X 1 0‘7 
a5 = +0.5529210296030711 X 
a6 = -0.142338131 1296310 X 10”O 

Ma= 0.13444107 X 

h = 16 
a. = -0.8333333321480760 X 

= + 0.3968255178485000 X 
a = - 0.82671 96924462379 X 10- 
a3 = + 0.1002046526767437 X 

- -0.8029333915166488 X a4 - 
a5 = +0.4617817733427159 X 10‘” 
a6 = -0.1978183008506138 X 

M a =  0.27690121 X 
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h = l  h = 2  

A =-0.4272502910304863 x ia- 
B =+0.4460409572215307 X IOo 
C =-0. IO20276052465536 X IO’ 
D =+0.4064530281034859 X IOo 
E =+0.3450015283629582 X IOo 
F =+0.2885054406289098 X 

A = -0.4272336986330691 X IO- ’ 
B =+0.4460090638507059 X I O o  
C = -0.1020282840851638 X IO’ 
D =+0.4064007086884238 X IOo 
E =+0.3449898120978949 X IOo 
F =+0.2883373149053849 X 

M = 0,5290906601729259 X I O -  l6 M= 0.1821459649775645X 

h = 4  

A =-0,4274056995233864 X IO” 
B =+0.4458621272744412 X IOo 
C = -0.1020307887595762 X IO’ 
D =+0.4061739766937458 X IOo 
E =+0.3449170623874602 X IOo 
F =+0.2876661053629565 X 

M = 0.1689186984732414 X 10- ’3 

h = 16 

A = -0 e 43 I 0245077956 I52 X IO-  ’ 
B =+0.4428994350437274 X IOo 
C = -0. IO20789569928175 X IO’ 
D =+0.4016042135773923 X IOo 
E =+O. 3434241762739658 X IOo 
F =+0.2744481265299470 X 

M = 0.2769012918263367 X 
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, P( X )  = ao+ a,  x +  a2x2+ a3x3+ a4x4 

C o U  #4  [- 1 + 13 S ( X ) # 4  [-I/ + 11 
a. = + 0.5000000000007 167 X 1 0 0 
a, = -0.4166666601424471 X 10'' 
a 2  = + 0.1388888879568642 X 
a3 = -0.2480419696201834 X 

a = + 0.1666666666667 1 42 X 1 Oo 
a l  = -0.8333333283147393 X 
a 2  = f  0.1984126977913694 X 
a 3 = - 0.2755932664326337 X 10' 
a = + 0.2505344666229896 X 1 0'7 

Ma = 0.10037290 X l o - "  

= + 0.2755932664579228 X 1 0'6 a4 

Ma = 0.13048673 X 

C ( X ) # 4  [-lf + q  
A = + 0.229 122 1893900772 X 10- A = + 0.1258104947765253 X 10- 

C = + 0.2592589041 826887 X 1 Oo C = + 0.1104585254341674 X 100 
D = + 0.401 1554686880556 X l oo  D =+0.2038526154314646 X 100 

B = -0.7655416156428518 X 10' B = -0.5959855810891701 X 10' 

E = - 0.33450083938941 42 X 10' E = - 0.9365973340739070 X 10' 

M = 0.1304868574303339 X M = 0.1003741534333355 X 10"O 
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APPENDIX I 

, 
The cubic equation (16) was solved by an interval-halving technique which can 

be extended to any continuous function f .  In general, this technique gives us  the 
"smallest" (in the sense of representability by computer) interval in which a 
value x can lie such that f (  x) = 0 ,  and this smallest interval can be found by 
a finite, fixed number of iterations. The most familiar interval-halving process  
consists of two par ts :  (1) finding the initial bracketing interval, the interval 
[a, b] in which f (  x) changes sign, then (2)  successively halving this interval, 
choosing each time the subinterval in which f ( x) changes sign, until the interval 
is as small  as desired. If par t  (1) is performed properly, then par t  (2) can be 
performed with a number of iterations determinable a priori ,  thus eliminating the 
test  fo r  interval s ize  at  the end of each iteration. 

To  begin, choose a number v and a number t , of the same sign as v ,  such 
[Positive v ' s  a r e  used for  positive roots and negative v's  for  
Test  the following sequence of intervals f o r  a sign change of 

that I t I 5 I V I  . 
negative roots.] 
f ( x ) :  

( 2 )  [ V t t ,  v + t t 2 t ]  

( 3 )  [ v t t  + 2 t ,  v + t  t 2 t  t4 t ]  

r D 

V tr 
i = O  

until the initial bracketing interval i s  found. Since I t I I 1 V I  , we have 

r 
i = O  
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and since v and t have the same sign, we have 

v f 2 2' t  
i = O  

2 129+' tl 

This simply says that the length of the initial bracketing interval is less than, or 
equal to, the magnitude of the small  end; in turn,  this means that the large end 
of the interval is at  most twice the magnitude of the small  end. 

Now, consider how the endpoint values would be represented in floating- 
point binary arithmetic (normalized) with an r-bit fraction. If the difference 
between their binary exponents is at most 1 (which is what we are getting at 
above), then i t  can be seen that the number of distinct points in the initial 
bracketing interval is at  most 2 r .  Therefore, the number of interval-halving 
iterations needed-that i s ,  the number of t imes one reduces his choice of points 
in the interval by one-half-is at most r .  Moreover, i t  often turns out that f is 
nearly (or exactly) zero  at  an end point of one of the half-intervals, so that r 
iterations are not always needed. 

W e  have treated the special case I t 1 I 1 V I  , but we need not res t r ic t  our- 
selves to it. The number of interval-halving iterations needed depends upon the 
size of t ,  and if one is willing to i terate a bit more he can find the initial 
bracketing interval more quickly by increasing t ; the converse of this also 
holds. 
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